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Abstract. Multiple unmanned aerial vehicles (UAVs) pursuit-evasion
game is a prominent approach for achieving air superiority. In this paper,
a multi-agent independent soft actor-critic (MAISAC) and multi-agent
independent decision transformer (MAIDT)-based offline reinforcement
learning training strategy (MMOTS) is proposed to train multiple UAVs
to complete the pursuit-evasion game, encompassing a two-stage design.
In the first stage, we develop the MAISAC algorithm to facilitate policy
improvement and offline dataset generation. In the second stage, MAIDT
is proposed to realize the model training and pursuit-evasion tasks. Fi-
nally, simulation results demonstrate that the proposed MMOTS can
achieve pursuit success rate exceeding 70% when the target distance
ranges from 6 to 8, and the number of pursuit UAVs ranges from two
to four. These outcomes underscore the outstanding generality, scalabil-
ity and performance of MMOTS in the context of multi-UAV pursuit-
evasion games. To accelerate relevant research in this direction, the code
for simulation will be released as open-source.

Keywords: Multiple unmanned aerial vehicles· Offline reinforcement
learning· Decision transformer · Pursuit-evasion game.

1 Introduction

The outstanding maneuverability of unmanned aerial vehicles (UAVs) has gar-
nered increasing attention from researchers, and they have been widely used in
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various fields such as aerial surveillance [4], environmental management, trans-
portation and search [10] and especially multi-UAV pursuit-evasion game [7]. A
multi-UAV pursuit-evasion game involves the coordinated use of multiple UAVs
to swiftly capture a single evading UAV, aiming to minimize the time required
for capture. This approach serves as a primary method to achieve air superiority.
Nonetheless, it frequently encounters unique challenges such as high test cost [3]
and real-time obstacle avoidance difficulties [1]. These challenges significantly
impede the advancement of multi-UAV pursuit-evasion game.

Traditionally, pursuit-evasion strategies for multiple UAVs have been rely-
ing based on mathematical models [6] or by employing rule-based or central-
ized control algorithms [2]. However, the performance of the strategies based
on mathematical model often deteriorates when the optimal parameters of the
controller change due to the change of the environment model. And rule-based
or centralized control algorithms are limited by the inability to know the future
maneuvering information and behavioral strategies of non-cooperative targets,
which leads to limited scalability and adaptability.

In recent years, the emergence of reinforcement learning (RL) provides a fea-
sible solution for multi-UAV pursuit-evasion game. Combined with RL, UAVs
can acquire control strategies autonomously in the environment. This significant
advancement enhances the efficiency of cooperative operations while simultane-
ously reducing the associated task execution risks [15, 13, 16]. However, in the
process of exploration, researchers are aware of two main challenges: (1) Exist-
ing multi-agent reinforcement learning (MARL) methods are commonly based
on centralized training with decentralized execution (CTDE), which makes the
algorithm less extensible. (2) RL methods need frequent interactions between
the agents and the environment, which costs a great deal of time and computing
resources [11, 18]. The above challenges greatly limit the application of RL in
the multi-UAV pursuit-evasion game.

Fortunately, the emergence of offline RL effectively addresses this issue. It
leverages pre-exising offline dataset for training, enhancing training efficiency
while conserving computational resources and time [12, 17]. However, the tradi-
tional algorithms rely on the time difference algorithm, which introduces three
fatal elements (bootstrap, off-policy and approximation), all of which can com-
promise training stability. Decision transformer (DT) is proposed to introduce
the transformer into offline RL for the first time, and it effectively avoids this se-
ries of shortcomings [5]. But it is difficult to extend it to multi-agent systems, and
the existing simulation environment lacks adequate data collection capabilities
and lacks high-precision simulation capabilities for multi-UAV pursuit-evasion
game [14].

Based on the above analysis, in this work we put forward multi-agent in-
dependent soft actor-critic (MAISAC) and multi-agent independent decision
transformer (MAIDT)-based offline RL training strategy (MMOTS) to train
multiple UAVs to successfully complete the pursuit-evasion game, improving
the scalability, generalization capabilities and training efficiency. Additionally,
we develop a high-precision simulation environment based on robotic operating
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Fig. 1. The diagram of multi-UAV pursuit-evasion game and its system and motion
model.

system (ROS), and conduct simulation experiments to verify the excellent per-
formance of MMOTS. To accelerate relevant research in this direction, the code
for simulation will be released as open-source.

2 Model, Environment and Problem Formulation

In this section, we first briefly present the system and motion model in Section
2.1 to better understand how multi-UAV pursuit-evasion works. Next, we provide
a specific description of the integrated simulation environment in Section 2.2 to
explain how it works. Finally, problem formulation is introduced in Section 2.3
to describe the optimization objectives and constraints.

2.1 System and Motion Model

In this paper, we categorize UAVs into two distinct types, i.e. the pursuit UAVs
(PUAVs), and the evasion UAVs (EUAVs). PUAVs are located at ppi(t) =

[xpi(t), ypi(t), zpi(t)]
T ∈ R3(i = 1, 2, . . . n) pursuing EUAVs located at pe(t) =

[xei(t), yei(t), zei(t)]
T ∈ R3(i = 1, 2, . . . n). Assuming all UAVs fly at a fixed al-

titude, and the position of the EUAV can be captured by the radar installed on
the PUAVs.

Generally, the UAV i is idealized as a 6-DoF rigid body, whose sketch is
shown in Fig. 1. The inertial system is established by taking the centroid of the
UAV as the origin of coordinates. And the forces and moments on the UAV are
mainly composed of gravity Gi ∈ R3, air drag Di ∈ R3 in the inertial frame, and
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total lifting force Uf ∈ R3 generated by motors in the body frame. Therefore,
the dynamic equation of the UAV i can be written as follows

T i(t)Uf (t) +Gi +Di(t) = miAi(t), (1)

Mi(t) = Iiω̇i(t) + ωi(t)× (Ii · ωi(t)) , (2)

where T i(t) ∈ R3×3 is the rotation matrix of each UAV, which can be expressed
as

T i(t) =

 cθicψi
−cφi

sψi
+ sφi

sθicψi
sφi

cψi
+ cφi

sθicψi

cθisψi cφicψi + sφisθicψi −sφicψi + cφisθisψi

−sθi cθisφi cθicφi

 , (3)

where ci =
[
cθi , cψi

, cφi

]T
=

[
cos θi, cosψi, cosφi

]T ∈ R3, si =
[
sθi , sψi

, sφi

]T
=[

sin θi, sinψi, sinφi
]T ∈ R3, and θ, ψ, φ stands for pitch angle, yaw angle, roll

angle of the UAV respectively, and they change over time t. Ai(t) ∈ R3 stands for
the acceleration on each UAV, mi represents the mass. Mi(t) ∈ R3, Ii ∈ R3×3,
ωi(t) ∈ R3 stands for the total moments, inertia matrix, angular velocity of the
UAV respectively.

2.2 Integrated Simulation Environment

Based on ROS, in this paper we build up an integrated simulation environment,
which is dedicated to the multi-UAV pursuit-evasion game and offline RL. We
start by using the scenario that has been built by other researchers. Then we
import the UAV models into Gazebo, and write offline RL framework based on
Pytorch. During the simulation, the offline RL framework first sends the control
signals, which are transmitted to Gazebo through the nodes in ROS to realize
the control of UAVs. Meanwhile, the interaction information between UAVs and
the environment in Gazebo will be returned to the offline RL framework in turn
and saved. The details and principles are shown in Fig. 2.

2.3 Problem Formulation

This paper aims to train multiple UAVs to complete pursuit-evasion game using
MMOTS, so we can use Markov game process (MGP) to model the pursuit-
evasion game. Since multiple UAVs constitute a multi-agent system and their
behavior depends only on the current state, the interaction between them and
the environment can be modeled as a MGP, which can be expressed as a (2N+5)
tuple

℧=(N,Sp1, · · ·,Spn,Se1, · · ·,Sen,Ap1, · · ·,Apn,Ae1, · · ·,Aen,Rp,Re,P, γ) , (4)

whereN is the total number of UAVs. Sp1 , · · · ,Spn , Se1 , · · · ,Sen , Ap1 , · · · ,Apn ,
Ae1 , · · · ,Aen , Rp and Re represent the state space, the action space and reward
function of the PUAVs and EUAVs, respectively. P ∈ (0, 1) is state transition
function, while γ ∈ (0, 1] stands for the discount factor.
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Fig. 2. The framework of the integrated simulation environment based on ROS.

Specifically, the state si(t) in the state space Si can be represented by

si(t) = [l(t), lpi−e(t),min(l(t)), αci(t), αpi−e(t)] , (5)

where each si(t) contains 28 elements, and vector l(t) is made up of the first 24
elements l1i(t), l2i(t), · · · , l24i(t), which are the distance to the obstacle detected
by the LIDAR sending 24 beams to the plane at an interval of 15◦. The last
4 beams are composed of the distance between the centroid coordinates of the
PUAV and the centroid coordinates of the EUAV, the distance of the nearest
obstacle, the orientation angle of the UAV, and the yaw angle of the nearest
obstacle, respectively.

The action ai(t) in the action space Ai can be given by

ai(t) = [ai(t), ςi(t)] . (6)

Based on the above analysis, the multi-UAV pursuit-evasion game can be
decomposed into the following objectives.

Policy optimization objective. At this stage, each UAV is trained for policy
improvement to gain optimal policy for the generation of offline dataset. For each
UAV, other UAVs are equivalent to dynamic obstacles in the environment, and
PUAVs should move close to EUAVs to gain reward rti . To optimize the policy
πi of each UAV, we should ensure that the total expected reward is maximized,
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which can lead to the formulation of the constraint optimization problem

max
πθi

J (θi) = max
πθi

E

[∑T=∞

t=1
rti

]
, (7)

where θi stands for the parameter of the policy πi.

Motion constraint objective. In view of the constraints of the structure and
power of the UAV itself, the action can be taken involve acceleration ∥ai(t)∥ =√
axi(t)

2 + ayi(t)
2 ∈ [amini , amaxi ] and angular acceleration ∥ςi(t)∥ ∈ [ςmini , ςmaxi ].

And the speed and angular speed of each UAV may also be limited to a certain
range

vmini
≤ ∥vi(t)∥ =

√
ẋi(t)2 + ẏi(t)2 ≤ vmaxi

, (8)

ωmini
≤ ∥ωi(t)∥ = ψ̈i(t) ≤ ωmaxi

. (9)

On one hand, in order to ensure that there is no collision between UAVs and
between UAVs and obstacles, we need to restrict the distance between UAVs,
and between each UAV and obstacles, i.e.

min(l(t)) ≥ li↔j
min ,∀ i, j ∈ N , i ̸= j. (10)

On the other hand, when the PUAV approaches the EUAV, it needs to make
sure that the distance is less than a certain value to complete the goal and get
reward ri(t), and we have

lpi−e(t) ≤ li↔e
max,∀ i ∈ Np, (11)

where N is the set of UAVs and obstacles, and Np is the set of PUAVs.

3 MAISAC and MAIDT-Based Offline RL Training
Strategy

In this section, the MAISAC and MAIDT-based offline RL training strategy
(MMOTS) is investigated to train multiple UAVs for pursuit-evasion game and
designated constraints. As observed from Fig. 3, it comprises two stages. At the
first stage, we first introduce the MAISAC to realize policy improvement, and
then optimal policy π∗ is selected to generate the offline dataset. At the second
stage, offline dataset is used to train the model of MAIDT, which will be applied
to multi-UAV to complete the pursuit-evasion game.

3.1 Multi-Agent Independent Soft Actor-Critic

Inspired by the original SAC algorithm [9, 8], we propose the MAISAC algorithm
and employ it to the multi-UAV situation, and train UAVs for policy improve-
ment via the framework of decentralized training with decentralized execution
(DTDE). MAISAC involves modeling two action value functions, Q1i and Q2i ,
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Fig. 3. The framework of the proposed MMOTS, which includes two stages: policy
improvement & offline dataset generation and model training & pursuit-evasion. At the
first stage, we first introduce the MAISAC to realize policy improvement and generate
offline dataset, while at the second stage, the dataset is utilized to train the model of
MAIDT, which will be applied to multi-UAV to complete the pursuit-evasion game.

along with a policy function πθi for each UAV. To address the issue of Q value
overestimation, we utilize two critic networks, Θ1i and Θ2i , as well as their re-
spective target networks, Θ−

1i
and Θ−

2i
. Consequently, the loss function of Q can

be formulated as

LQ1i
(Θ1i) = E(st,at,rt,st+1)∼Di

[1/2(QΘ1i
(st,at)− (rt + γVΘ−

1i

(st+1)))
2, (12)

LQ2i
(Θ2i) = E(st,at,rt,st+1)∼Di

[1/2(QΘ2i
(st,at)− (rt + γVΘ−

2i

(st+1)))
2, (13)

where Di denotes the replay buffer to store collected data, while VΘ−
1i

(st) and

VΘ−
2i

(st) represent the state value function with parameters Θ−
1i

and Θ−
2i

, re-
spectively. To prevent the UAV i from getting stuck in local optimal policy,
we introduce entropy regularization and the VΘ−

1i

(st+1) and VΘ−
2i

(st+1) can be
given by

VΘ−
1i

(st+1) = min
j=1,2

QΘ−
ji

(st+1,at+1)− αi log πθi (at+1 | st+1) , (14)

VΘ−
2i

(st+1) = min
j=1,2

QΘ−
ji

(st+1,at+1)− αi log πθi (at+1 | st+1) , (15)

where αi stands for the regularization coefficient that controls the importance of
entropy. Subsequently, we can derive the loss function of policy for UAV i from
the KL divergence, which is simplified to

Lπθi
(θi) = Est∼Di,at∼πθi

[
αi log (πθi (at | st))− min

j=1,2
Qθji (st,at)

]
. (16)

Additionally, considering that sampling action is not derivable according to
Gaussian distribution n, the reparameterization trick is introduced. So the policy
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function can be expressed as at = fθi (ϵt; st), where ϵt is the noise random vari-
able. Considering two action value functions at the same time, the loss function
of the policy can be rewritten as

Lπθi
(θi)=Est∼Di,ϵt∼n

[
αi log (πθi(fθi(ϵt; st) |st))−min

j=1,2
QΘji

(st, fθi(ϵt; st))

]
.

(17)
To adjust the entropy regular term automatically. We constrain the entropy

to enable its mean is greater than H0, and obtain the loss function of αi, i.e.

L (αi) = Est∼Di,at∼πθi
(·|st) [−αi log πθi (at | st)− αiH0] . (18)

Relying on Eq. (18), we can accurately control the explore-exploit trade-off.
Meanwhile taking advantage of the DTDE architecture, MAISAC gains strong
scalability, improves the training efficiency and ensures the quality of the offline
dataset. Next, to generate the offline dataset, we take the policy corresponding
to the maximum total reward during the training process as the optimal policy
π∗, which is used for UAVs to interact with the environment for data collection,
saving all the trajectories during the process as an offline dataset, which can be
expressed as

τi = (r̂1i , s1i ,a1i , r̂2i , s2i ,a2i , . . . , r̂Ti
, sTi

,aTi
) , (19)

where r̂ti =
∑T
t′=t rt′i stands for returns-to-go of UAV i.

3.2 Multi-Agent Independent Decision Transformer

Similar to [5], DT is introduced to abstract offline RL problems into seq2seq
problems and use sequences to model targets. And we expand DT to MAIDT.

MAIDT is mainly based on transformer architecture, which consists of stacked
self-attention layers with residual connections. Each self-attention layer receives
n embeddings {xi}ni=1 corresponding to unique input tokens, and outputs n em-
beddings {zi}ni=1, preserving the input dimensions. The i-th token is mapped
via linear transformations to a key ki, query qi, and value vi. The i-th output
of the self-attention layer is given by weighting the values vj by the normalized
dot product between the query qi and other keys ki, which can be shown as

zi =

n∑
j=1

softmax
(
{< qi, kj′ >}nj′=1

)
j
· vj . (20)

When training the model, we sample n batches of sequence with length K
from the offline dataset. The prediction head corresponding to the input token
si(t) is trained to predict action âi(t) with mean-squared error LMSE for con-
tinuous actions. So the model training objective is to minimize the error, and
the error for each timestep is averaged, and we have

max
πθ′

i

J ′ (θ′i) = min
πθ′

i

LMSE (θ′i) = min
πθ′

i

− 1

N

N∑
j=1

(aj − âj)
2

 . (21)
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Algorithm 1 MMOTS Framework
1: Initialize the training environment, including the replay buffer Di, critic network

and corresponding target network, policy network, MAIDT model parameters Θ1i ,
Θ2i , Θ̄1i , Θ̄2i , ϕi, αi, and θ′i of UAV i.

2: for each episode k do
3: Reset the training environment and total reward.
4: for each time step t do
5: Sample an action according to the policy: ati ∼ πθi (ati | sti);
6: Collect the next state from environment: st+1i ∼ P (st+1i | sti ,ati);
7: Calculate reward rti ;
8: Store sampling tuple (sti ,ati , rti , st+1i) into Di.
9: Extract N batches tuple of data from Di.

10: Θji ← Θji − λΘji
∇Θji

JΘji
(Θji) , j = 1, 2.

11: θi ← θi − λθi∇θiJθi (θi).
12: αi ← αi − λαi∇αiJαi (αi).
13: Θ̄ji ← κΘji + (1− κ)Θ̄ji , j = 1, 2
14: end for
15: end for
16: Collect trajectories τi using optimal policy by (19).
17: Sample n batches of sequence with length K from the offline datasets τi.
18: for each gradient step j do

Update the models of MAIDT by Adam updating on θ′i on LMSE (θ′i) by (21).
19: end for

Then the trained model of MAIDT is used to make real-time prediction of
the actions of each UAV by inputting the initial state and expected returns-
to-go, and finally completes the pursuit-evasion game. The overall framework
pseudo-code of MMOTS is detailed in Algorithm 1.

4 Simulation and Analysis

In this section, we will verify the validity of MMOTS by simulating the whole
process of training multiple UAVs to conduct the pursuit-evasion game. First,
we will introduce the setting of the simulation experiment, and then the whole
process of the experiment will be introduced in detail. Finally, the results of
simulation experiments are described and analyzed, and the performance of the
proposed algorithm will be discussed.

4.1 Experiment Settings

In the simulation experiment, we divide the parameters into three parts and con-
sider them respectively: UAV parameters, simulation parameters and algorithm
parameters.

For the UAV and simulation parameters, we consider the experimental site
of 430m × 610m, and take the center of the site as the coordinate origin, the
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Table 1. Parameters of UAV, Simulation and Algorithms

Parameters Values

UAV
parameters

Mass (mi) 0.85
Max velocities (vm) 6.0 m/s
Max acceleration (am) 5.0 m/s2

Max angular velocity (ωm) 1.5 rad/s
Max angular acceleration (ςm) 3.0 rad/s2

Inertia moments (Ixxi, Iyyi, Izzi) 0.006, 0.006, 0.001 kgm2

Simulation
parameters

Experimental site size 430m × 610m
Safe distance (li↔j

min ) 6m
Target distance (li↔e

max) 8m

Algorithm
parameters

Learning rate λ 3 × 10−4

Discount factor γ 0.99
Soft updating rate κ 0.01
Regularization coefficient α 0.2
Memory capacity C 5 × 105

Sample batch size B 256
Training episodes E 150
Time step per episode ∆t 0.5
Iterations 5000

boundary of the site is treated as a barrier to prevent UAVs from going be-
yond the boundary. And for the algorithm parameters, in the first stage using
MAISAC, we mainly refer to the parameters setting of SAC and modify them
slightly [9]. Then in the second stage using MAIDT, we mainly refer to the com-
monly used DT parameters in [5]. The parameters mentioned in the above are
shown in Table 1.

4.2 Process of Experiment and Results analysis

The two stages of MMOTS together constitute the whole process of simulation
experiment. In each stage, with the help of radar, UAVs know the specific lo-
cations of each other, but don’t know the locations of obstacles in advance. At
the first stage, we first use MAISAC to train two PUAVs to pursue two EUAVs
respectively. Considering that the environment is unstable at this time, the ve-
locity of EUAVs is set to 0 to reduce the difficulty of training. The PUAVs will
obtain the real-time reward according to the reward function Rp and Re, and
they can be respectively written as (22) and (23)

Rp (spi(t),api(t)) =


2, lpi−e(t− 1) > lpi−e(t),
−2, lpi−e(t− 1) < lpi−e(t),

−500, min(l(t)) ≤ li↔j
min ,

80, lpi−e(t) ≤ li↔e
max,

0, else .

(22)

Re (sei(t),aei(t)) =

{
−500, min(l(t)) ≤ li↔j

min ,
0, else .

(23)
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and the number of PUAVs is 4.

When the distance between the PUAV and the EUAV is less than li↔e
max, the

pursuit will be regarded as successful, and the position of the EUAV will be ran-
domly initialized nearby, which drives the corresponding PUAV to continue the
pursuit. When the UAV encounters an obstacle or maximum steps per episode is
over 3000, the environment will be reset and proceed to the next episode. Then
we change the random seed and repeat the experiment three times. With the
increase of the number of training episodes, the average total return curves of
the two PUAVs show a gradual upward trend, which is shown in Fig. 4.

At episode 120, when the curve is nearly flat, the UAVs’ policies can be con-
sidered to have been improved to expert policies. Then the policy corresponding
to the highest total reward (22514) is selected as the optimal policy to collect
data and make offline dataset.
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Fig. 6. Trajectories of each UAV for one successful pursuit episode in the simulation
environment.

Next, we carry out the second stage of MMOTS, while conducting multiple
experiments by changing the target distance li↔e

max ranging from 6 meters to 8
meters, and the number of PUAVs ranging from two to four. For the convenience
of discussion, we take the target distance li↔e

max as 8m and the number of PUAVs
as 4 for an example. The offline dataset generated at the first stage is used to
train the MAIDT model, and the train loss curves of the model are obtained,
which are shown in Fig. 5.

Next, to make four PUAVs and one EUAV complete the pursuit-evasion
game, we apply the trained MAIDT model to UAV. The highest total reward and
the initial position of each UAV (280,80), (250,80), (190,80), (220,84), (235,160)
are input into the model, which enables the model to predict the next action
based on the current returns-to-go and state. After running 100 episodes in
simulation environment, we can draw out the trajectories of each UAV in one of
the episodes, which are shown in Fig. 6.

As observed from Fig. 6, the EUAV is located in front of PUAVs, and they
start to fly at the same time to perform their respective tasks while avoiding
obstacles. After 2400 steps, the EUAV is rounded up by PUAVs, which indicated
that PUAVs complete the mission. In contrast, when the EUAV is still able to
move smoothly after 3000 steps, it indicates that the EUAV completes its task.
In addition, the average total reward curves of each UAV corresponding to these
100 episodes can be obtained, as shown in Fig. 7.

By observing Fig. 7, it can be found that: The average total reward of each
PUAV is basically concentrated in 17000 and fluctuates up and down slightly.
However, the average total reward of the EUAV is concentrated in -500 and is
equal to 0 in rare cases. This indicates that the PUAVs successfully completes
pursuit most of the time. Furthermore, we also conduct the ablation experiment
with the target distance ranging from 6 meters to 8 meters, and the number of
PAUVs ranging from two to four. And finally we can obtain the average success
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Fig. 7. Average total reward curves of each UAV when the target distance li↔e
max is 8m

and the number of PUAVs is 4.

6  m e t e r s 7  m e t e r s 8  m e t e r s0
2 0
4 0
6 0
8 0

1 0 0
1 2 0
1 4 0

7 0 . 6 7 5 . 4
8 3 . 8

7 6 . 2 7 9 . 8 8 5 . 18 0 . 7 8 3 . 9 8 8 . 9

Su
cce

ss 
rat

e o
f p

urs
uit

 T w o  P A U V s
 T h r e e  P U A V s
 F o u r  P U A V s

Fig. 8. The success rate of pursuit with the target distance li↔e
max ranging from 6m to

8m, and the number of PUAVs ranging from two to four.

rate of pursuit through these experiments, and present the simulation experiment
results, as shown in Fig. 8 and Table 2.

The results of the simulation in the above show that, with the increase of tar-
get distance and PUAVs number, the success rate of pursuit shows an increasing
trend, and all cases achieve a success rate of more than 70%, which indicates the
excellent generalization and performance of MMOTS. In addition, only a small
number of UAVs are used for policy improvement and offline dataset generation.
As a result, the pursuit-evasion game can be extended to accommodate UAVs of
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Table 2. Results of Experiments

Target distance PUAVs number MMOTS
6 meters Two 70.6%±6.7%
6 meters Three 76.2%±5.2%
6 meters Four 80.7%±3.7%
7 meters Two 75.4%±6.7%
7 meters Three 79.8%±4.5%
7 meters Four 83.9%±3.1%
8 meters Two 83.8%±4.6%
8 meters Three 85.1%±2.8%
8 meters Four 88.9%±2.4%

any quantity, demonstrating the excellent scalability of MMOTS and enhancing
training efficiency.

5 Conclusion

In this paper, we present a special training strategy named MMOTS, which is
designed to train multiple UAVs to complete the pursuit-evasion game within
a self-designed integrated simulation environment. There are two stages in the
MMOTS: the first stage employs MAISAC to facilitate policy improvement and
offline dataset generation, while the second stage utilizes MAIDT to conduct
model training and pursuit-evasion simulations. Simulation results validate the
excellent generation and scalability of MMOTS, demonstrating strong perfor-
mance in the context of multi-UAV pursuit-evasion game. As a part of future
work, we are planning to further improve the realism of the simulation, and con-
duct both simulation and real-world experiments in even more complex tasks.
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